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Abstract

We propose a new model of preferences over uncertain outcomes to explain ambiguity aver-
sion. The model combines the insights of loss aversion (Kahneman and Tversky, 1979) with the
two-stage approach of previous models, primarily that of Segal (1987). The model is similar
in flavor to the vector expected utility model proposed by Siniscalchi (2009), in which acts are
evaluated with respect to their expected utility combined with an adjustment function. More
generally, Grant and Polak (2013) show that the model of Siniscalchi (2009)—and several other
models of ambiguity aversion—are special cases of what they call mean-dispersion preferences,
in which acts are evaluated with respect to their mean utility accounting for deviations from
the mean. The key difference in the model we propose is that acts are evaluated differently
depending on whether they are presented in isolation or alongside another act (capturing the
insights of Fox and Tversky (1995)), and preferences are centered around a reference utility
rather than the expected utility. Because of this, the model we propose is not a form of mean-
dispersion preferences (Grant and Polak, 2013) or even the more general dispersion aversion
model of Chambers et al. (2014). Examples are provided to demonstrate the model’s ability to
capture observed behavior across several different settings, providing an intuitive explanation
for ambiguity aversion.



1 Introduction

A continuing open question in economics is why individuals display aversion to ambiguity. This

phenomenon was first introduced by Ellsberg (1961) in thought experiments which have since

become known as Ellsberg Urns. In this paper, we propose a new model of decision making that

incorporates loss aversion to explain the existence of ambiguity aversion. To motivate the model,

we focus our discussion on the two-color urn thought experiment first introduced by Ellsberg.

The two-color urn experiment can be set up as follows: there are two urns, each containing 100

balls. In the first urn, there are 50 red and 50 black balls. In the second urn, the mixture of red

and black balls is ambiguous. The decision maker (DM) can choose to place a bet on the first urn

or the ambiguous urn. Whichever urn the DM chooses, they can select to place their bet on either

a red ball or a black ball. One ball is then randomly drawn from the selected urn, and if the color

matches the DM’s bet, the DM is awarded some payoff (say $100). If the color does not match

the DM’s bet, the DM receives nothing (that is, $0). Regardless of which urn the DM chooses to

place their bet on, their odds of winning are 1/2. However, despite this fact, in practice it has

been consistently observed that DMs prefer the first urn over the second, ambiguous urn. That is,

individuals display ambiguity aversion.

Standard expected utility theory predicts that bets over the two urns should be equivalent, and

therefore cannot explain the observed behavior. In response, many alternative theories of ambiguity

have been developed in an attempt to explain what has been coined Ellsberg preferences. Among

these models, at least three distinct approaches have been used. The first approach, the Maxmin

Expected Utility model developed by Gilboa and Schmeidler (1989), assumes DMs cannot form a

prior for the ambiguous urn and instead consider a set of possible priors, evaluating the bet based

on the minimum expected utility obtained over all priors in the set. In our current example, if the

DM considers all distributions of red and black balls to be possible, their expected utility will be

minimized when the ambiguous urn happens to contain 0 red balls and 100 black balls (assuming

the DM bets on red). As such, under the Maxmin Expected Utility model the DM will prefer the

first urn (with a guaranteed 50% chance of winning) to the ambiguous urn. A second approach

has been to allow DMs to have beliefs about the colors of the balls in the ambiguous urn that are

represented by non-additive probability measures (Schmeidler, 1989). In our example, the DM may

have beliefs represented by a capacity ν(·), where

ν(sr, sb) = 1, and ν(sr) = ν(sb) = ε, (1)

for some ε ∈ [0, 1/2). Expected utility is then evaluated using the Choquet Integral. A third

approach has been to model ambiguity as part of a “two-stage” model, separating the first-stage

horse lottery from the roulette lottery realized in the second stage (Segal, 1987; Klibanoff et al.,

2005). It is within this approach that we develop our model.

Unlike previous models, we develop a new model which incorporates the insights of loss aversion

(Kahneman and Tversky, 1979) into individuals’ evaluation of the first-stage uncertainty. That is,

1



when comparing the first urn with the ambiguous urn, the DM forms priors about the possible

distributions of colors present in the ambiguous urn, and they evaluate these distributions relative

to a reference distribution. While the reference distribution used could potentially vary across

individuals and settings, in our current example we have a straightforward choice: the DM should

compare all possible distributions to the 50-50 distribution they receive by choosing the first urn.

Any distribution that provides worse odds than the 50-50 bet is considered to be a loss, and any

distribution providing better odds is considered a gain. Because individuals are assumed to be loss

averse, they will avoid the ambiguous urn because the potential losses outweigh the potential gains.

This model has a significant advantage over previous two-stage models that model ambiguity

aversion as concavity of preferences over first-stage outcomes, such as the Smooth Ambiguity Prefer-

ences Model of Klibanoff et al. (2005). These models are unable to explain why individuals display

ambiguity aversion in some cases and ambiguity preference in others, depending on the relative

probabilities and whether payoffs are framed in terms of gains or losses. For a given individual,

such models must either always predict ambiguity aversion or always predict ambiguity preference.

By allowing for loss aversion over first-stage uncertainty, the model we propose can explain such

reversals, just as prospect theory has been able to do for risk aversion.

Finally, this new model is also able to provide an intuitive explanation for the recent finding

that individuals prefer larger ambiguous urns over smaller ones (Filiz-Ozbay et al., 2022). As the

size of the ambiguous urn increases, the set of possible distributions becomes less extreme.1 As

such, a DM who displays loss aversion over first-stage uncertainty will prefer the larger urn.2

In what follows, we introduce the model in the context of the two-urn problem. We then provide

a characterization of the model without enforcing any structure on decision-makers’ beliefs over

the distribution of second-stage lotteries, and then use this characterization to derive key results

addressing notable findings in the experimental literature on ambiguity aversion. Following this, we

introduce additional axioms that provide structure on decision-makers’ beliefs over the distribution

of second-stage lotteries and, using this additional structure, derive additional results demonstrating

the model’s ability to capture observed behavior. We then provide numerical examples.

2 Model Setup

We model the ambiguity as a two-stage process. The general setup follows that of Segal (1987).

In the first stage, a probability distribution µ over the state space S is realized, being randomly

drawn with probability measureM over ∆(S). In the first urn, the first stage is degenerate, so that

the probability measure M collapses to µ = (50r, 50b) with probability 1. For the second urn, all

1An urn with only two balls has only three possible distributions: (2r, 0b), (1r, 1b), or (0r, 2b). For an urn with
N = 100 balls, there are N +1 = 101 total possible distributions, but the extremes remain the same as for the N = 2
urn. That is, there are now many more (98 more, to be exact) possible distributions which are not as extreme as
those available in the smaller urn.

2This is assuming the DM has beliefs about the measure µ(·) which are centered around the reference distribution
(50r, 50b) and their uncertainty over the measure µ(·), represented by the measure M(·) over the space ∆(S), assigns
nonzero probability to all µ ∈ ∆(S).
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combinations of red and black balls are possible, and the DMmust form beliefs about the probability

measure M over all distributions µ ∈ ∆(S). In the first stage, a probability distribution µ ∈ ∆(S)

is realized. In the second stage, a state s is then drawn based on the probability distribution µ.

As done in previous models, we assume the DM views the two stages as separate and distinct. We

also assume that all measures have finite support.

The DM views the basic act f(·) = (...;xj , Ej ; ...) as occurring within the two-stage prospect

(...; (...;xj , Ej ; ...), µk; ...), where µk is the probability distribution over states that is realized in the

first stage, and Ej is the event realized under distribution µk in the second stage. Given an act

f(·) = (...;xj , Ej ; ...), each probability distribution µ ∈ ∆(S) induces a simple lottery of the form

(...;xj , µ(Ej); ...). Thus, each basic act f(·) can be represented as a two-stage objective lottery of the

form (...; (...;xj , µk(Ej); ...),M(µk); ...), where µk(Ej) is the probability of event Ej occurring given

the probability distribution µk, and M(µk) is the individual’s personalistic or subjective probability

of distribution µk being realized in the first stage.

Following Segal (1987), we assume the individual has a preference function V (·) defined over

single-stage lotteries, and they are able to use this preference function to determine the certainty

equivalent of each single-stage lottery. Thus, the DM uses V (·) to determine the certainty equivalent

of each single-stage lottery induced by each probability distribution µ ∈ ∆(S). That is, for each

probability distribution µ ∈ ∆(S), the DM calculates the certainty equivalent CE(f, µ) for the

lottery induced by µ, such that

V (CE(f, µ), 1) = V (...;xj , µ(Ej); ...).

The two-stage lottery faced by the DM can now be rewritten as

(...; (...;xj , µk(Ej); ...),M(µk); ...) = (...;CE(f, µk),M(µk); ...). (2)

If the individual evaluates this lottery again using the function V (·), this yields the preference

function

W (f(·)) ≡ V (...;CE(f, µk),M(µk); ...).

In this case, if the preference function V (·) over objective lotteries is expected utility, the final

preference function W (f(·)) just becomes subjective expected utility, which is unable to explain

Ellsberg preferences. Thus, rather than using expected utility, Segal (1987) uses the rank-dependent

expected utility form of Quiggin (1982) for V (·).
From here we take a different approach. We use the expected utility form for V (·),3 and we

assume that individuals form additive probability measures M over the possible probability distri-

butions µ ∈ ∆(S). However, we assume that individuals do not have the same preference function

for subjective (first-stage) and objective (second-stage) lotteries. In particular, subjects have the

3That is, for a lottery P = (...;αi, pi; ...), V (P) =
∑

i U(αi) · pi.
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expected utility preference function V (·) for second-stage lotteries, but have a different preference

function ψ(·) for first-stage lotteries. The preference function ψ(·) over first-stage lotteries incor-

porates loss aversion, and is evaluated with respect to some reference lottery Pr. For a lottery

P = (...;αi, pi; ...) with α1 > · · · > αm > · · · > αn, where αm = inf{α : α ≥ r, r ≡ U−1(V (Pr))},
the preference function takes the form

ψ(P, r) = U(r) +

m∑
i=1

υ+(αi − r) · pi +
n∑

j=m+1

υ−(αj − r) · pj , (3)

where

U(x) =

υ+(x) for x ≥ 0

υ−(x) for x < 0
(4)

and, consistent with loss aversion, υ+(x) > 0, υ−(x) < 0, υ′+(x) < υ′−(−x), υ′′+(x) ≤ 0, and

υ′′−(−x) ≥ 0 for all x > 0; and υ+(0) = υ−(0) = 0.

In general, an exact formula for identifying the individual’s reference point may be difficult to pin

down. However, with respect to the motivating example of the two-urns problem, there exists a very

straightforward reference point: the probability distribution µ = (50r, 50b) available to the DM with

certainty via the first urn. Denoting this probability distribution as µr, the individual compares

the certainty equivalent of the lottery induced by each µ ∈ ∆(S) with the certainty equivalent

of the lottery induced by µr. Labeling the induced lotteries Pk = (...;xj , µk(Ej); ...) so that

V (P1) ≥ · · · ≥ V (Pm) ≥ · · · ≥ V (Pn), where V (Pm) = inf{V (Pi) : U
−1(V (Pi)) ≥ U−1(V (Pr))},

the individual’s preference function for the second urn can be written as

W (f(·)) = V (Pr) +

m∑
i=1

υ+
(
CE(f, µi)− CE(f, µr)

)
·M(µi)

+

n∑
j=m+1

υ−
(
CE(f, µj)− CE(f, µr)

)
·M(µj). (5)

The first term comes from observing that the certainty equivalent of a lottery P is given by

U−1(V (P)). Without any ambiguity (i.e., without any first-stage uncertainty over the distribu-

tion µ), the above simplifies to become W (f(·)) = V (Pr). Therefore, one restriction we will need

to enforce on the formulation of the reference point will be that, for any degenerate first-stage

lottery, the reference point used will always be equal to the certainty equivalent of the second-stage

lottery which is realized with certainty. That is, if an individual faces a single-stage lottery P∗,

their valuation of the degenerate two-stage lottery {P∗, 1} must evaluate to W (f(·)) = V (P∗).

The general idea of this model is that, when comparing the ambiguous urn to the unambiguous

urn, the DM considers all of the possible distributions µ ∈ ∆(S) that could occur in the ambiguous

urn, and they weight the ‘worse’ distributions more than the ‘better’ distributions. The worse
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distributions are those that provide a lower certainty equivalent. In the two urn example, the

worse distributions are simply those that provide a lower probability of winning. For example,

if one is planning to bet on a red ball being drawn, a worse distribution would be one such as

(40r, 60b), (30r, 70b), etc. Because all of the possible distributions are centered around the (50r, 50b)

distribution of the unambiguous urn, there are an equal number of worse and better distributions

possible in the ambiguous urn. As long as the individual forms M(·) to be symmetric around

µ = (50r, 50b), each ‘worse’ distribution will have a mirror-image ‘better’ distribution that occurs

with equal probability. However, because individuals are loss-averse, the worse distributions are

more influential than the better distributions, causing the ambiguous urn to be considered worse

than the unambiguous urn.

In the following section, we formally characterize the model.

3 Characterization

3.1 Primitives and Environment

Let S be a finite state space and X ⊆ R a (bounded, closed) set of monetary outcomes.4 Write

∆(S) for the set of probability measures on S. An act is a function f : S → X. A (second-stage)

objective lottery is a simple lottery P = (xi, pi)
n
i=1 on X.

Two-stage ambiguity. Following the two-stage approach, a first-stage draw selects a distribution

µ ∈ ∆(S) according to a (subjective) probability measure M on ∆(S) with finite support; then a

state s is drawn from µ and f(s) is paid. We denote the (compound) ambiguous act by (f,M).

For µ ∈ ∆(S), let Pf,µ denote the objective lottery induced by f under µ: Pf,µ = (f(s), µ(s))s∈S .

Second-stage EU and certainty equivalents. Preferences over objective lotteries satisfy vNM

axioms (below), so there exists a strictly increasing, continuous Bernoulli utility u : X → R such

that

V (P ) =
∑
i

u(xi)pi for any objective lottery P = (xi, pi)i.

The certainty equivalent (CE) of P is CE(P ) = u−1(V (P )). We write CE(f, µ) := CE(Pf,µ).

Comparison contexts and references. Choices are contextual in the sense that the decision

maker (DM) evaluates a target act relative to a comparison act that pins down a reference point.5

Formally, a context is an ordered pair c = (A; g), where A is a feasible set containing the target

act and g ∈ A is the designated comparison act.6 A reference selection operator R maps g to an

4The monetary domain simplifies exposition; standard extensions to general outcome spaces with a Bernoulli
utility follow.

5This is where the model departs from mean/dispersion preferences: the reference is context-generated, not the
mean of the target object.

6In binary choice experiments, g can be taken as “the other option.” In unilateral evaluation, g can be a status
quo.

5



objective reference lottery P r = R(g) that will anchor the first-stage evaluation of the target.

The DM has a context-dependent preference relation ⪰c over acts, read “weakly preferred in

context c”.

3.2 Reference Rules (Selection Axioms)

The following rules formalize the reference valuation. These rules determine which act in A will

serve as the comparison act, and they also determine how the comparison act will be valued. When

presented with multiple acts, the DM is assumed to select the least ambiguous option to serve as

the reference, where “least ambiguous” is as defined below. If multiple options are tied for the

least ambiguous, the DM is assumed to select the act with the highest certainty equivalent. In

the two-urn problem where a DM is presented with a choice between an unambiguous urn and an

ambiguous urn, it is assumed the DM will select the unambiguous urn as the comparison act.

Axiom 1 (Selection of the comparison act (least-ambiguity rule)). Let A be a finite, nonempty

menu of acts. For each a ∈ A, let fa be its outcome map on a (finite) state space Sa. Assume

Axiom 5 (vNM on risk) and Axiom 3 (label invariance).

Pre-reference baseline for selection. For each a ∈ A there exists a σ-finite Borel measure

Π0
a on ∆(Sa) such that µ 7→ CE(fa, µ) is Borel and integrable under Π0

a. Denote the baseline CE

random variable

Ca(µ) := CE(fa, µ), µ ∼ Π0
a,

and its mean c̄(a) := EΠ0
a
[Ca]. (These Π0

a are used only to select the comparison; first-stage beliefs

for valuation are specified elsewhere.)

Ambiguity (dispersion) index. Fix once and for all a strictly increasing, strictly convex func-

tion ρ : [0,∞) → [0,∞) with ρ(0) = 0 (e.g., ρ(t) = t2 or ρ(t) = t). Define the ambiguity index of a

by

Amb(a) := EΠ0
a

[
ρ
(
|Ca − c̄(a)|

)]
.

Intuitively, Amb(a) measures the spread of plausible certainty equivalents for a across models µ.

Selection rule. The comparison act g ∈ A is selected by the lexicographic rule

g ∈ argmin
a∈A

(
Amb(a), −c̄(a)

)
,

and, if several acts tie on both coordinates, by a fixed exogenous total order ⪯ on labels (choose

the ⪯-minimal act).

Reference assignment. Given the selected g, the reference lottery isR(g) as specified in Axiom 2

(in particular, if g is an objective lottery P , then R(g) = P ).
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Axiom 2 (Cross-reduction for ambiguous comparisons). If g = (h,M ′) is ambiguous, then R(g)

equals the reduction of g, i.e.,

R(g) =
(
u−1(Eµ∼M ′ [V (Ph,µ)]), 1

)
.

Equivalently, R(g) is the degenerate lottery paying CE(h, µ) in expectation over M ′.

Axiom 3 (Context symmetry and neutrality). R depends on g only via the reduced objective

lottery induced by g, and is invariant to outcome/state relabelings that leave that reduced lottery

unchanged.

3.3 Axioms on Preferences

Axiom 4 (Weak order). For each context c, ⪰c is complete and transitive on the feasible set.

Axiom 5 (vNM on objective lotteries). On the subset of objective lotteries, ⪰c (for any c) satisfies

independence and continuity, yielding the u-expected utility representation V above.

Axiom 6 (First-stage separability via CEs). For any context c with reference P r = R(g) and

r := CE(P r), the evaluation of a target (f,M) in context c depends on f and M only through the

distribution of CE(f, µ) under M and the scalar r.

Axiom 7 (Additive aggregation over first-stage uncertainty). Fix c and r. If M has finite support

{µk}Kk=1 with weights {Mk}, then the value of (f,M) equals a (reference-centered) probability-

weighted sum of (possibly different) gain/loss transforms of CE(f, µk)− r.

Axiom 8 (Loss aversion with concave gains and convex losses). There exist continuous, strictly

increasing functions v+, v− : [0, d̄] → R+ with v+(0) = v−(0) = 0, and a parameter λ > 1, such

that the reference–indexed evaluation map ϕr : [−d̄, d̄] → R is defined by

ϕr(d) =

v+(d), d ≥ 0,

−λ v−(−d), d < 0,

and the following properties hold:

(i) Concave gains. v+ is concave on [0, d̄] (diminishing sensitivity for gains).

(ii) Convex losses for ϕr. v− is concave on [0, d̄]; hence the loss branch d 7→ −λ v−(−d) is convex
on [−d̄, 0].7

(iii) Loss-aversion kink at the reference. The one-sided slope limits at 0 exist and satisfy

α+ := lim
x↓0

v+(x)

x
∈ (0,∞), α− := lim

x↓0

v−(x)

x
∈ (0,∞),

7Since v− is concave, −v− is convex; composition with the affine map d 7→ −d preserves convexity.
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with the loss-aversion inequality

ϕ′−(0) = λα− > α+ = ϕ′+(0).

Equivalently, for sufficiently small ε > 0, |ϕr(−ε)| > ϕr(ε).

(iv) Monotonicity. ϕr is strictly increasing on [−d̄, d̄].

Axiom 9 (Outcome/utility normalization). u is unique up to positive affine transformations; v+

and v− are unique up to a common positive scaling that is absorbed by u’s affine normalization.

Axiom 10 (Continuity in M). ⪰c is continuous in the weak topology induced by convergence of

the distributions of CE(f, µ) under M .

3.4 Representation

Define the piecewise transform

ϕr(d) :=

v+(d) if d ≥ 0,

−λ v−(−d) if d < 0.

Let r = CE
(
R(g)

)
. For (f,M) with finite support {µk}k, write dk := CE(f, µk)− r.

Theorem 1 (Loss-Reference Ambiguity Representation). Suppose Axioms 1–10 hold. Then for

each context c = (A; g) there exist:

• a vNM utility u representing ⪰c on objective lotteries;

• loss-aversion primitives (λ, v+, v−) as in Axiom 8;

• and an additive first-stage belief M on ∆(S) (with finite support on considered menus);8

such that (f,M) ⪰c (f
′,M ′) iff

Wc(f,M) :=

u(r) + Eµ∼M
[
ϕr
(
CE(f, µ)− r

)]
≥ u(r) + Eν∼M ′

[
ϕr
(
CE(f ′, ν)− r

)]
=:Wc(f

′,M ′), (6)

where r = CE(R(g)) is the contextually determined reference given by Axioms 1–2. Conversely,

any preference that admits a representation of the form (6) satisfies Axioms 1–10.

Remark 1 (Relation to existing classes). Representation (6) is not a mean/dispersion functional

since (i) it centers at the contextual reference r, not the mean of the target, and (ii) the transform is

asymmetric around r due to λ > 1. Hence it generally falls outside mean-dispersion and dispersion-

aversion classes.
8Allowing σ-additivity and integrals over ∆(S) is straightforward under standard measurability/compactness.
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3.5 Comparative Statics and Testable Implications

3.5.1 Ellsberg two-urn aversion (comparative ignorance pattern)

Consider comparing an unambiguous act g to an ambiguous (f,M), with R(g) = g, r = CE(g).

Assume M is symmetric around the distribution that replicates g (so that the distribution of

CE(f, µ)− r is symmetric around 0). Then:

Proposition 1 (Ellsberg aversion under symmetry). Fix a context c = (A; g) with g unambiguous

and reference r = CE(g). Let (f,M) be ambiguous and let D := CE(f, µ) − r (with µ ∼ M)

be symmetric about 0: D
d
= −D. Assume Axiom 8 (concave v+ and v−, λ > 1) and the global

loss-dominance condition
v+(t)

v−(t)
≤ λ for all t ∈ (0, d̄]. (7)

Then Wc(f,M) ≤Wc(g, δ) = u(r), with strict inequality whenever P(|D| > 0) > 0 and (7) is strict

on a set of |D|-positive probability. In particular, (7) is satisfied if v− = v+, in which case

Wc(f,M) = u(r) + E[ϕr(D)] ≤ u(r), strict if P(|D| > 0) > 0.

Remark 2 (About the loss-dominance condition). Condition (7) is a global version of the standard

local loss-aversion kink (λα− > α+). It holds trivially when v− = v+ and λ > 1, and more generally

whenever λ ≥ supt∈(0,d̄] v+(t)/v−(t), which is natural if λ is elicited as the upper envelope of gain-

to-loss sensitivity ratios on the relevant domain.

3.5.2 Reversals as success probability changes

Let g deliver high success probability ph and g′ low pℓ with ph > 1/2 > pℓ. Under symmetric M ,

the mass of CE deviations below r is larger around a high ph reference; above r around a low pℓ

reference. Then:

Proposition 2 (Reference shifts generate reversals). Fix the primitives and axioms of Theorem 1.

Consider a binary-outcome environment with xL < xH and, for each p ∈ [0, 1], let gp be the

unambiguous act that yields xH with objective probability p and xL otherwise. By Axiom 5,

r(p) := CE(gp) = u−1
(
p u(xH) + (1− p)u(xL)

)
is well-defined, continuous, and strictly increasing in p.

Fix an ambiguous target act (f,M) and write

X := CE(f, µ) ∈ [xL, xH ] (µ ∼M),

which is a bounded, non-degenerate random variable unless (f,M) is degenerate. Let ϕr(d) =

v+(d)1{d ≥ 0} − λv−(−d)1{d < 0} be the loss-reference transform from Axiom 8, and define for
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each p the difference value (ambiguous versus unambiguous benchmark at p):

∆W (p) := Wc

(
f,M

)
−Wc(gp, δ) = E

[
ϕr(p)

(
X − r(p)

)]
.

Then:

(a) ∆W : [0, 1] → R is continuous and strictly decreasing in p.

(b) ∆W (0) > 0 provided P(X > xL) > 0, and ∆W (1) < 0 provided P(X < xH) > 0.

Consequently, there exists a unique p̄ ∈ (0, 1) such that

∆W (p)


> 0 for p < p̄ (ambiguity seeking),

= 0 for p = p̄,

< 0 for p > p̄ (ambiguity aversion).

In particular, the DM is ambiguity seeking for sufficiently small p and ambiguity averse for suffi-

ciently large p.

3.5.3 Preference for larger ambiguous urns

Let MN be beliefs over ∆(S) with urn size N (e.g., uniform over counts or binomial with 1/2). As

N increases, MN contracts toward its center (in convex order). Then:

Proposition 3 (Ambiguity-size effect). Fix a context c = (A; g) with reference r = CE(R(g)), and

an act f . Let D := CE(f, µ)− r (with µ ∼M) and D′ := CE(f, µ′)− r (with µ′ ∼M ′). Assume:

(a) Symmetry at the reference: D
d
= −D and D′ d

= −D′ (e.g., by a symmetric baseline and a

kernel depending on |d|).

(b) Magnitude contraction: |D′| ≤FOSD |D| on [0, d̄] (first-order stochastic dominance of magni-

tudes).

(c) Concave common sensitivity: v+ = v− =: v is continuous, strictly increasing and concave,

with v(0) = 0.

(d) Loss aversion: λ > 1.

Then

Wc(f,M
′) ≥ Wc(f,M),

with strict inequality if P(|D′| < |D|) > 0 and v is strictly increasing on a set of positive |D|-mass.
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Appendix: Proofs

Proof of Theorem 1 (Loss-Reference Ambiguity Representation)

We provide a complete proof of the representation in Theorem 1 and its converse. Throughout, fix

a context c = (A; g), let P r := R(g) be the (objective) reference lottery specified by Axioms ??–2,

and write

r := CE(P r) ∈ X, CE(P ) := u−1

(∑
i

u(xi)pi

)
with u given by Axiom 5. For any ambiguous act (f,M), define the (first-stage) random variable

Df,M := CE(f, µ)− r (µ ∼M).

Axiom 6 ensures that, in context c, the evaluation of (f,M) depends on (f,M) only through the

law Law(Df,M ) and the scalar r. We denote by Pr the set of all Borel probability measures on the

compact interval

Ir := [c− r, c− r] ⊂ R, c := minX, c := maxX,

equipped with the topology of weak convergence.

Plan.

1. Reduce preferences on acts to a continuous affine functional Fr : Pr → R over the distributions

of CE-deviations (Lemmas 1–3).

2. Show that, for finite-support laws, Fr is the expectation of a single-index function ψr : Ir → R
(Lemma 5).

3. Extend to all of Pr by continuity (Lemma 6).

4. Identify the gain/loss branches from Axiom 8 and normalize (Lemma 7).

5. Verify the converse: any preference represented by (6) satisfies Axioms ??–10.

Step 1: Reduction to distributions of CE-deviations

Lemma 1 (Reduction). Fix c and r. There exists a well-defined functional Fr on the set

Pach
r := {Law(Df,M ) : (f,M) ∈ A} ⊆ Pr

such that, for any (f,M) ∈ A,

Wc(f,M) = u(r) + Fr (Law(Df,M )) .

Moreover, by Axioms 6, 3, the value Fr(P ) depends only on P ∈ Pr.

11



Proof. Fix c and r. Axioms 5 and 6 imply that the evaluation of (f,M) depends only on the

distribution of Df,M and on r. Define Fr on Pach
r by

Fr(Law(Df,M )) :=Wc(f,M)− u(r).

If (f,M) and (f ′,M ′) induce the same law for D, Axiom 6 implies Wc(f,M) = Wc(f
′,M ′), hence

Fr is well-defined on equivalence classes (and thus on the image set Pach
r ). Axiom 3 rules out

dependence on labels beyond the law of D. Finally, Df,M ∈ Ir because CE(f, µ) ∈ [c, c] and

r ∈ X.

Lemma 2 (Richness and implementability). For any finite-support P =
∑K

k=1 pk δdk on Ir there

exists a single act (f̃ , M̃) ∈ A such that Law(Df̃ ,M̃ ) = P .

Proof. Fix {(pk, dk)}Kk=1. For each k, pick any objective lottery Pk on X with CE(Pk) = r + dk

(possible by continuity and monotonicity of u and the richness of simple lotteries). Construct

disjoint finite state spaces Sk and acts fk : Sk → X together with beliefs µk ∈ ∆(Sk) that implement

Pfk,µk = Pk. Let S̃ :=
⊔K
k=1 Sk and define f̃ by f̃ |Sk

:= fk. Define M̃ as the probability measure on

∆(S̃) which selects µk with probability pk (view each µk as supported on its own block Sk). Then,

for µ ∼ M̃ , CE(f̃ , µ) = CE(fk, µk) = r + dk with probability pk, hence Law(Df̃ ,M̃ ) =
∑

k pk δdk =

P .

Lemma 3 (Affinity in first-stage mixtures). For any P,Q ∈ Pach
r and α ∈ [0, 1] with αP+(1−α)Q ∈

Pach
r , one has

Fr
(
αP + (1− α)Q

)
= αFr(P ) + (1− α)Fr(Q).

Proof. By Lemma 2 there exist acts (fP ,MP ) and (fQ,MQ) implementing P and Q. Construct an

act (f,M) on the disjoint union state space that equals (fP ,MP ) with probability α and equals

(fQ,MQ) with probability 1− α. This can be done by the same block-diagonal construction as in

Lemma 2, now with two blocks and weights α, 1− α. Then Law(Df,M ) = αP + (1− α)Q and, by

Axiom 7,

Fr(αP + (1− α)Q) =Wc(f,M)− u(r)

= α
(
Wc(fP ,MP )− u(r)

)
+ (1− α)

(
Wc(fQ,MQ)− u(r)

)
= αFr(P ) + (1− α)Fr(Q).

Lemma 4 (Continuity). Fr is continuous on Pach
r under weak convergence of laws.

Proof. Let Pn = Law(Dfn,Mn) → P = Law(Df,M ) weakly, with all laws in Pach
r . Axiom 10 delivers

continuity of preferences in the weak topology induced by the pushforward of M through µ 7→
CE(f, µ); hence Wc(fn,Mn) →Wc(f,M) and thus Fr(Pn) → Fr(P ).

12



Step 2: Affine representation for finite supports

Lemma 5 (Finite-support representation). There exists a function ψr : Ir → R with ψr(0) = 0

such that for any P =
∑K

k=1 pk δdk ∈ Pach
r ,

Fr(P ) =
K∑
k=1

pk ψr(dk).

Moreover, ψr is unique, and ψr is strictly increasing and continuous.

Proof. Construction and uniqueness. Define ψr(d) := Fr(δd) for d ∈ Ir, where δd is the unit mass

at d. This is well-defined since (by Lemma 2) every δd is achievable via a degenerate first-stage

belief (and an appropriate f). Further, Axiom ?? and the definition of r imply that when d = 0

(i.e., an act reduced to the reference), Wc = u(r), hence Fr(δ0) = 0, so ψr(0) = 0.

Let P =
∑K

k=1 pk δdk be a finite-support law. Using Lemma 2, build an act (f,M) implementing

P by a block-diagonal construction where, conditional on the block k, Law(D) = δdk . Axiom 7

implies

Fr(P ) = Fr

(∑
k

pkδdk

)
=
∑
k

pkFr(δdk) =
∑
k

pk ψr(dk).

If also Fr(P ) =
∑

k pkψ̃r(dk) for some ψ̃r, then by evaluating at singleton supports we get ψr(d) =

ψ̃r(d) for all d ∈ Ir, proving uniqueness.

Strict monotonicity. Suppose d1 < d2. Consider the laws δd1 and δd2 . By Axiom 4 and u strictly

increasing, CE = r + d2 strictly dominates CE = r + d1 as an objective certainty; under Axiom 6,

this yields a strict preference at the first stage, hence Fr(δd2) > Fr(δd1), i.e., ψr(d2) > ψr(d1).

Continuity. Let dn → d. Then δdn ⇒ δd weakly, so by Lemma 4, Fr(δdn) → Fr(δd), i.e.,

ψr(dn) → ψr(d).

Step 3: Extension to general laws on Ir

Lemma 6 (Continuous affine extension). Let ψr be as in Lemma 5. For any P ∈ Pach
r ⊆ Pr (the

closure in the weak topology), define

Iψr(P ) :=

∫
Ir

ψr(d)P (dd),

where the integral is the (unique) limit of expectations along any sequence of finite-support Pn ⇒ P .

Then Iψr is well-defined, continuous and affine, and Fr(P ) = Iψr(P ) for all P in the closure. In

particular, if Pach
r is dense in Pr, then Fr(P ) =

∫
ψr dP for all P ∈ Pr.

Proof. Since Ir is compact and ψr is continuous, ψr is bounded. Let Pn be a sequence of finite-

support measures converging weakly to P . By the Portmanteau theorem, for any bounded continu-

ous ψr,
∫
ψr dPn →

∫
ψr dP . On the other hand, for finite-support laws Pn =

∑
k pn,kδdn,k

, Lemma

5 gives Fr(Pn) =
∑

k pn,kψr(dn,k) =
∫
ψr dPn. By Lemma 4, Fr(Pn) → Fr(P ). Therefore the limit

13



limn

∫
ψr dPn exists, equals Fr(P ), and is independent of the chosen approximating sequence. This

defines Iψr(P ) unambiguously, yields Fr(P ) = Iψr(P ) on the closure, and continuity/affinity follow

from limits and the corresponding properties on finite-support laws.

Remark 3 (Density of achievable laws). In the baseline environment of the paper we restrict to

finite-support M “on considered menus,” so Lemma 5 already delivers the representation needed

for all objects of interest. If needed, density of finite-support laws in Pr is standard (empirical

distributions approximate any probability law on a compact metric space), and the construction in

Lemma 2 ensures implementability of any such finite-support law.

Step 4: Identification of gain/loss branches and the kink

Lemma 7 (Branches and loss aversion). Let ψr : Ir → R be the single-index function from

Lemma 5, defined by ψr(d) := Fr(δd). Under Axiom 8 (concave gains, convex losses for ϕr),

there exist continuous, strictly increasing, concave functions v+, v− : [0, c−r] → R+ with v±(0) = 0

and a parameter λ > 1 such that

ϕr(d) := ψr(d) =

v+(d), d ≥ 0,

−λ v−(−d), d < 0,

and:

(a) Curvature by branch. The gains branch d 7→ v+(d) is concave on [0, c− r]. The losses branch

d 7→ −λ v−(−d) is convex on [c− r, 0] (since v− is concave).

(b) Loss-aversion kink. The one-sided slope limits at 0 exist and satisfy

ϕ′r,−(0) = λα− > α+ = ϕ′r,+(0), where α± := lim
x↓0

v±(x)

x
∈ (0,∞).

(c) Monotonicity. ϕr is strictly increasing on Ir.

Proof. By construction of ψr from singleton laws (Lemma 5), ψr records the first-stage evaluation

of a sure deviation d. Axiom 8 postulates that, at such sure deviations, the gain side is represented

by a concave v+, and the loss side by −λv−(−·) with v− concave, together with the slope ratio

λα− > α+ at 0. This yields the stated piecewise form. Strict increase follows since v± are strictly

increasing and λ > 1 preserves order on the loss side. Convexity of the loss branch is immediate:

v− concave ⇒ −v− convex; composition with d 7→ −d preserves convexity; multiplying by λ > 0

preserves convexity.
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Step 5: Conclusion of the “if” part

Combining Lemmas 1, 5, and 6, and then substituting the branch decomposition from Lemma 7,

we have, for any (f,M) ∈ A,

Wc(f,M) = u(r) +

∫
Ir

ψr(d) Law(Df,M )(dd) = u(r) + Eµ∼M [ϕr(CE(f, µ)− r)] ,

where ϕr(d) := ψr(d) = v+(d)1{d ≥ 0} − λv−(−d)1{d < 0}. This is exactly the representation

stated in Theorem 1 for the fixed context c.

Step 6: Uniqueness and normalization

Lemma 8 (Uniqueness). Within a fixed context c and reference r, the function ψr (equivalently

ϕr) is unique. Consequently, (v+, v−, λ) are unique up to a common positive multiplicative factor

absorbed by the affine normalization of u (Axiom 9).

Proof. If Fr(P ) =
∫
ψr dP =

∫
ψ̃r dP for all finite-support P , then in particular ψr(d) = ψ̃r(d) for

all d by evaluating at P = δd. Hence ψr is unique. If we scale ψr by a > 0 and add a constant

b, the constant vanishes in differences because Fr(δ0) = 0 pins ψr(0) = 0, so b = 0; scaling by a

can be absorbed into u’s (positive) affine normalization since Wc is only determined up to such

transformations, proving the claim about (v+, v−, λ).

Step 7: Converse (“only if”)

Assume that for each context c = (A; g) there exist: (i) u that represents preferences over objective

lotteries (Axiom 5); (ii) a reference operator consistent with Axioms ??–3 that yields r = CE(R(g));

and (iii) a function ϕr of the piecewise form in Lemma 7 such that

Wc(f,M) = u(r) + Eµ∼M
[
ϕr(CE(f, µ)− r)

]
represents ⪰c on A. We verify the axioms:

• Axiom 4 (Weak order): Wc is a real-valued functional; completeness and transitivity follow.

• Axiom 5 (vNM on risk): If M is degenerate at a fixed µ, then CE(f, µ) = CE(P ) for the

objective lottery P = Pf,µ and Wc(f,M) = u(r) + ϕr(CE(P ) − r). Comparisons between two

objective lotteries P and Q with the same reference r reduce to u-orderings, as ϕr increases

strictly and ϕr(0) = 0 pins normalization.

• Axioms ??–3 (Reference rules and neutrality): Hold by assumption on R and because Wc

depends on (f,M) only through r and the pushforward law of CE(f, ·).

• Axiom 6 (Separability via CEs): Built in: Wc depends on (f,M) only through the distribution

of CE(f, µ) and r.
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• Axiom 7 (Additive aggregation): Built in via the expectation Eµ∼M [·].

• Axiom 8 (Loss-averse kink): Holds by construction of ϕr from (v+, v−, λ) with the stated shape

and slope ratio.

• Axiom 9 (Normalization): u is unique up to positive affine transformations, and ϕr up to a

positive factor that can be absorbed by u (Lemma 8).

• Axiom 10 (Continuity in M): IfMn ⇒M and CE(f, ·) is bounded and continuous on a compact

set, then ϕr◦ (CE(f, ·)− r) is bounded and continuous, so by Portmanteau, EMn [ϕr(CE(f, µ)−
r)] → EM [ϕr(CE(f, µ)− r)]; hence Wc(f,Mn) →Wc(f,M).

Q.E.D.

Proof of Proposition 1

Proof. Symmetry and the definition ϕr(d) = v+(d)1{d ≥ 0} − λv−(−d)1{d < 0} give

E[ϕr(D)] = 1
2 E[ϕr(D) + ϕr(−D)] = 1

2 E[ v+(|D|)− λv−(|D|) ] .

By (7), for every t > 0 we have v+(t)− λv−(t) ≤ 0, hence the integrand is a.s. ≤ 0 and strictly < 0

on any event where |D| > 0 and the inequality is strict. Therefore E[ϕr(D)] ≤ 0 (strict < 0 under

the stated condition), so Wc(f,M) = u(r) + E[ϕr(D)] ≤ u(r) = Wc(g, δ), with strict inequality as

claimed.

For the special case v− = v+, we have v+(t) − λv+(t) = (1 − λ)v+(t) < 0 for all t > 0, which

yields strict aversion whenever P(|D| > 0) > 0.

Proof of Proposition 2

Proof. We prove (a)–(b) and then apply the intermediate value theorem.

Step 1: Continuity of ∆W . Fix any sequence pn → p. Because u is continuous and strictly

increasing, r(pn) → r(p). For each ω, the map

(d, r) 7→ ϕr(d) = v+(d)1{d ≥ 0} − λv−(−d)1{d < 0}

is continuous in (d, r) on the compact domain d ∈ [xL − r, xH − r], r ∈ [xL, xH ] (since v± are

continuous and v±(0) = 0). Hence ϕr(pn)(X − r(pn)) → ϕr(p)(X − r(p)) pointwise almost surely.

Moreover,
∣∣ϕr(X − r )

∣∣ is bounded uniformly over r ∈ [xL, xH ], because X ∈ [xL, xH ] implies

|X − r| ≤ |xH − xL| and v± are continuous on a compact interval, hence bounded. Dominated

convergence then yields

∆W (pn) = E
[
ϕr(pn)(X − r(pn))

]
−−−→
n→∞

E
[
ϕr(p)(X − r(p))

]
= ∆W (p),

establishing continuity.
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Step 2: Strict monotonicity in p. Let p1 < p2; then r1 := r(p1) < r2 := r(p2). Fix ω and set

x := X(ω). Since r 7→ x − r is strictly decreasing and ϕr(·) is (by construction) the same strictly

increasing function of its scalar argument d = x − r for every fixed reference level,9 we have the

pointwise strict inequality

ϕr2(x− r2) = ϕ(x− r2) < ϕ(x− r1) = ϕr1(x− r1).

Taking expectations gives ∆W (p2) < ∆W (p1). Therefore ∆W is strictly decreasing in p.

Step 3: Signs at the endpoints. Because r(0) = CE(g0) = xL, we have

∆W (0) = E[ϕxL(X − xL)] = E
[
v+
(
X − xL

)]
(since X ≥ xL a.s.).

If P(X > xL) > 0, then v+(X−xL) > 0 on a set of positive probability (as v+ is strictly increasing

and v+(0) = 0), hence ∆W (0) > 0.

Similarly, r(1) = CE(g1) = xH , so

∆W (1) = E[ϕxH (X − xH)] = E
[
−λ v−

(
xH −X

)]
(since X ≤ xH a.s.),

and if P(X < xH) > 0 then v−(xH −X) > 0 with positive probability, so ∆W (1) < 0.

Step 4: Existence and uniqueness of p̄. By Step 1, ∆W is continuous on the compact interval

[0, 1]; by Step 3, ∆W (0) > 0 and ∆W (1) < 0. The intermediate value theorem then yields at least

one p̄ ∈ (0, 1) with ∆W (p̄) = 0. Step 2 (strict monotonicity) implies this zero is unique, and the

sign pattern follows: ∆W (p) > 0 for p < p̄ and ∆W (p) < 0 for p > p̄.

Nondegeneracy caveat. If (f,M) is degenerate at a single certainty equivalent X ≡ x⋆, then

∆W (p) = ϕ
(
x⋆ − r(p)

)
is still continuous and strictly decreasing in p; the above argument goes

through unchanged, except that one of the endpoint inequalities may be weak if x⋆ equals the

corresponding endpoint.

Remarks.

1. The proof does not require symmetry of M nor concavity/convexity of v±; it uses only: (i)

the representation of Theorem 1; (ii) continuity and strict monotonicity of r(·); and (iii) strict

monotonicity of v± (hence of ϕ) with v±(0) = 0, λ > 0. The stronger shape restrictions in

Axiom 8 ensure the comparative statics of Proposition 1 but are not needed here.

2. If, in addition, the environment is outcome-symmetric in the sense that the map p 7→ r(p) is

midpoint-symmetric around p = 1
2 in levels (e.g., u is affine so r(p) = p xH+(1−p)xL), and if the

law of X is symmetric around r(12), then one obtains the mirror identity ∆W (1−p) = −∆W (p),

9Formally, for any r we evaluate the same piecewise function ϕ(d) at d = x− r, with the sign cutoff at d = 0 (i.e.,
at x = r). Because v± are strictly increasing on [0,∞) and λ > 0, the function d 7→ ϕ(d) is strictly increasing on R.
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hence p̄ ≥ 1
2 and the “seeking for small p, aversion for large p” regions are exact mirrors around

1
2 .

Proof of Proposition 3

Proof. Under (c), the index is

ϕr(d) =

v(d), d ≥ 0,

−λ v(−d), d < 0.

By symmetry (a), for any integrable function ψ(|d|),

E
[
ψ(|D|)1{D ≥ 0}

]
= E
[
ψ(|D|)1{D < 0}

]
= 1

2 E[ψ(|D|)].

Hence

E[ϕr(D)] = E
[
v(|D|)1{D ≥ 0}

]
− λE

[
v(|D|)1{D < 0}

]
= 1

2 (1− λ)E
[
v(|D|)

]
.

The same identity holds for D′:

E[ϕr(D′)] = 1
2 (1− λ)E

[
v(|D′|)

]
.

Because v is (strictly) increasing and |D′| ≤FOSD |D|, we have

E
[
v(|D′|)

]
≤ E

[
v(|D|)

]
,

with strict inequality if P(|D′| < |D|) > 0 and v is strictly increasing on a set of positive mass.

Multiplying by the negative constant 1
2 (1− λ) yields

E[ϕr(D′)] ≥ E[ϕr(D)],

with strict inequality under the stated condition. Adding u(r) to both sides completes the proof.

18



References

Chambers, Robert G, Simon Grant, Ben Polak, and John Quiggin (2014) “A two-parameter model

of dispersion aversion,” Journal of Economic Theory, 150, 611–641.

Ellsberg, Daniel (1961) “Risk, ambiguity, and the Savage axioms,” The Quarterly Journal of Eco-

nomics, 75 (4), 643–669.

Filiz-Ozbay, Emel, Huseyin Gulen, Yusufcan Masatlioglu, and Erkut Y Ozbay (2022) “Comparing

ambiguous urns with different sizes,” Journal of Economic Theory, 199, 105224.

Fox, Craig R and Amos Tversky (1995) “Ambiguity aversion and comparative ignorance,” The

Quarterly Journal of Economics, 110 (3), 585–603.

Gilboa, Itzhak and David Schmeidler (1989) “Maxmin expected utility with non-unique prior,”

Journal of Mathematical Economics, 18 (2), 141–153.

Grant, Simon and Ben Polak (2013) “Mean-dispersion preferences and constant absolute uncer-

tainty aversion,” Journal of Economic Theory, 148 (4), 1361–1398.

Kahneman, Daniel and Amos Tversky (1979) “Prospect Theory: An Analysis of Decision under

Risk,” Econometrica, 47 (2), 263–292.

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji (2005) “A smooth model of decision

making under ambiguity,” Econometrica, 73 (6), 1849–1892.

Quiggin, John (1982) “A Theory of Anticipated Utility,” Journal of Economic Behavior and Or-

ganization, 3 (4), 323–343.

Schmeidler, David (1989) “Subjective probability and expected utility without additivity,” Econo-

metrica, 571–587.

Segal, Uzi (1987) “The Ellsberg paradox and risk aversion: An anticipated utility approach,”

International Economic Review, 28 (1), 175–202.

Siniscalchi, Marciano (2009) “Vector expected utility and attitudes toward variation,” Economet-

rica, 77 (3), 801–855.

19


