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Abstract

I propose a new model of preferences over uncertain outcomes to explain ambiguity
aversion. The model is presented in the context of the classic Ellsburg two-urn prob-
lem, and simple numerical examples are provided to demonstrate the model’s ability
to capture observed behavior. The model combines the insights of loss aversion (Kah-
neman and Tversky, 1979) with the two-stage approach of previous models, primarily
that of Segal (1987). The model is similar in flavor to the vector expected utility
model proposed by Siniscalchi (2009), in which acts are evaluated with respect to their
expected utility combined with an adjustment function. More generally, Grant and
Polak (2013) show that the model of Siniscalchi (2009)—and several other models of
ambiguity aversion—are special cases of what they call mean-dispersion preferences, in
which acts are evaluated with respect to their mean utility accounting for deviations
from the mean. The key difference in the model I propose is that acts are evaluated
differently depending on whether they are presented in isolation or alongside another
act (capturing the insights of Fox and Tversky (1995)), and preferences are centered
around a reference utility rather than the expected utility. Because of this, the model
I propose is not a form of mean-dispersion preferences (Grant and Polak, 2013) or
even the more general dispersion aversion model of Chambers et al. (2014). The ex-
amples provided demonstrate the model’s ability to capture observed behavior across
several different settings, and I believe the model provides an intuitive explanation for
ambiguity aversion.

What is presented here is a general outline of the idea of the model. It is of course
very preliminary, and the purpose of it is simply to convey the conceptual approach
that I am interested in taking. In future work on this subject, my hope is to further
develop the model, as well as to design some experiments that can test its performance
and potentially contribute a deeper understanding of how individuals make decisions
under uncertainty.



1 Introduction

A continuing open question in economics is why individuals display aversion to ambiguity.

This phenomenon was first introduced by Ellsberg (1961) in thought experiments which

have since become known as Ellsberg Urns. In this paper, I propose a new model of decision

making that incorporates loss aversion to explain the existence of ambiguity aversion. To

motivate the model, I focus my discussion on the two-color urn thought experiment first

introduced by Ellsberg.

The two-color urn experiment can be set up as follows: there are two urns, each containing

100 balls. In the first urn, there are 50 red and 50 black balls. In the second urn, the mixture

of red and black balls is ambiguous. The decision maker (DM) can choose to place a bet

on the first urn or the ambiguous urn. Whichever urn the DM chooses, they can select to

place their bet on either a red ball or a black ball. One ball is then randomly drawn from

the selected urn, and if the color matches the DM’s bet, the DM is awarded some payoff

(say $100). If the color does not match the DM’s bet, the DM receives nothing (that is, $0).
Regardless of which urn the DM chooses to place their bet on, their odds of winning are 1/2.

However, despite this fact, in practice it has been consistently observed that DMs prefer the

first urn over the second, ambiguous urn. That is, individuals display ambiguity aversion.

Standard expected utility theory predicts that bets over the two urns should be equiv-

alent, and therefore cannot explain the observed behavior. In response, many alternative

theories of ambiguity have been developed in an attempt to explain what has been coined

Ellsberg preferences. Among these models, at least three distinct approaches have been used.

The first approach, the Maxmin Expected Utility model developed by Gilboa and Schmeidler

(1989), assumes DMs cannot form a prior for the ambiguous urn and instead consider a set

of possible priors, evaluating the bet based on the minimum expected utility obtained over

all priors in the set. In our current example, if the DM considers all distributions of red and

black balls to be possible, their expected utility will be minimized when the ambiguous urn

happens to contain 0 red balls and 100 black balls (assuming the DM bets on red). As such,

under the Maxmin Expected Utility model the DM will prefer the first urn (with a guaranteed

50% chance of winning) to the ambiguous urn. A second approach has been to allow DMs

to have beliefs about the colors of the balls in the ambiguous urn that are represented by

non-additive probability measures (Schmeidler, 1989). In our example, the DM may have

beliefs represented by a capacity ν(·), where

ν(sr, sb) = 1, and ν(sr) = ν(sb) = ε, (1)

for some ε ∈ [0, 1/2). Expected utility is then evaluated using the Choquet Integral. A
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third approach has been to model ambiguity as part of a “two-stage” model, separating the

first-stage horse lottery from the roulette lottery realized in the second stage (Segal, 1987;

Klibanoff et al., 2005). It is within this approach that I develop my new model.

Unlike previous models, I develop a new model which incorporates the insights of loss

aversion (Kahneman and Tversky, 1979) into individuals’ evaluation of the first-stage uncer-

tainty. That is, when comparing the first urn with the ambiguous urn, the DM forms priors

about the possible distributions of colors present in the ambiguous urn, and they evaluate

these distributions relative to a reference distribution. While the reference distribution used

could potentially vary across individuals and settings, in our current example we have a

straightforward choice: the DM should compare all possible distributions to the 50-50 dis-

tribution they receive by choosing the first urn. Any distribution that provides worse odds

than the 50-50 bet is considered to be a loss, and any distribution providing better odds is

considered a gain. Because individuals are assumed to be loss averse, they will avoid the

ambiguous urn because the potential losses outweigh the potential gains.

This model has a significant advantage over previous two-stage models that model am-

biguity aversion as concavity of preferences over first-stage outcomes, such as the Smooth

Ambiguity Preferences Model of Klibanoff et al. (2005). These models are unable to explain

why individuals display ambiguity aversion in some cases and ambiguity preference in others,

depending on the relative probabilities and whether payoffs are framed in terms of gains or

losses. For a given individual, such models must either always predict ambiguity aversion

or always predict ambiguity preference. By allowing for loss aversion over first-stage uncer-

tainty, the model I propose can explain such reversals, just as prospect theory has been able

to do for risk aversion.

Finally, this new model is also able to provide an intuitive explanation for the recent

finding that individuals prefer larger ambiguous urns over smaller ones (Filiz-Ozbay et al.,

2022). As the size of the ambiguous urn increases, the set of possible distributions becomes

less extreme.1 As such, a DM who displays loss aversion over first-stage uncertainty will

prefer the larger urn.2

In what follows, I provide a rough outline of the model. While the model will hopefully be

as general as possible, I center the following discussion around the two-urn setting previously

introduced.

1An urn with only two balls has only three possible distributions: (2r, 0b), (1r, 1b), or (0r, 2b). For an
urn with N = 100 balls, there are N + 1 = 101 total possible distributions, but the extremes remain the
same as for the N = 2 urn. That is, there are now many more (98 more, to be exact) possible distributions
which are not as extreme as those available in the smaller urn.

2This is assuming the DM has beliefs about the measure µ(·) which are centered around the reference
distribution (50r, 50b) and their uncertainty over the measure µ(·), represented by the measure M(·) over
the space ∆(S), assigns nonzero probability to all µ ∈ ∆(S).
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2 Theory

I model the ambiguity as a two-stage process. The general setup follows that of Segal

(1987). In the first stage, a probability distribution µ over the state space S is realized,

being randomly drawn with probability measure M over ∆(S). In the first urn, the first

stage is degenerate, so that the probability measure M collapses to µ = (50r, 50b) with

probability 1. For the second urn, all combinations of red and black balls are possible, and

the DM must form beliefs about the probability measure M over all distributions µ ∈ ∆(S).

In the first stage, a probability distribution µ ∈ ∆(S) is realized. In the second stage, a

state s is then drawn based on the probability distribution µ. As done in previous models, I

assume the DM views the two stages as separate and distinct. I also assume that all measures

have finite support.

The DM views the basic act f(·) = (...;xj, Ej; ...) as occurring within the two-stage

prospect (...; (...;xj, Ej; ...), µk; ...), where µk is the probability distribution over states that

is realized in the first stage, and Ej is the event realized under distribution µk in the second

stage. Given an act f(·) = (...;xj, Ej; ...), each probability distribution µ ∈ ∆(S) induces

a simple lottery of the form (...;xj, µ(Ej); ...). Thus, each basic act f(·) can be represented

as a two-stage objective lottery of the form (...; (...;xj, µk(Ej); ...),M(µk); ...), where µk(Ej)

is the probability of event Ej occurring given the probability distribution µk, and M(µk) is

the individual’s personalistic or subjective probability of distribution µk being realized in the

first stage.

Following Segal (1987), I assume the individual has a preference function V (·) defined

over single-stage lotteries, and they are able to use this preference function to determine

the certainty equivalent of each single-stage lottery. Thus, the DM uses V (·) to determine

the certainty equivalent of each single-stage lottery induced by each probability distribution

µ ∈ ∆(S). That is, for each probability distribution µ ∈ ∆(S), the DM calculates the

certainty equivalent CE(f, µ) for the lottery induced by µ, such that

V (CE(f, µ), 1) = V (...;xj, µ(Ej); ...).

The two-stage lottery faced by the DM can now be rewritten as

(...; (...;xj, µk(Ej); ...),M(µk); ...) = (...;CE(f, µk),M(µk); ...). (2)

If the individual evaluates this lottery again using the function V (·), this yields the preference
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function

W (f(·)) ≡ V (...;CE(f, µk),M(µk); ...).

In this case, if the preference function V (·) over objective lotteries is expected utility, the

final preference function W (f(·)) just becomes subjective expected utility, which is unable

to explain Ellsberg preferences. Thus, rather than using expected utility, Segal (1987) uses

the rank-dependent expected utility form of Quiggin (1982) for V (·).
From here I take a different approach. I use the expected utility form for V (·),3 and I

assume that individuals form additive probability measures M over the possible probability

distributions µ ∈ ∆(S). However, I assume that individuals do not have the same preference

function for subjective (first-stage) and objective (second-stage) lotteries. In particular,

subjects have the expected utility preference function V (·) for second-stage lotteries, but

have a different preference function ψ(·) for first-stage lotteries. The preference function

ψ(·) over first-stage lotteries incorporates loss aversion, and is evaluated with respect to

some reference lottery Pr. For a lottery P = (...;αi, pi; ...) with α1 > · · · > αm > · · · > αn,

where αm = inf{α : α ≥ r, r ≡ U−1(V (Pr))}, the preference function takes the form

ψ(P, r) = U(r) +
m∑
i=1

υ+(αi − r) · pi +
n∑

j=m+1

υ−(αj − r) · pj, (3)

where

U(x) =

υ+(x) for x ≥ 0

υ−(x) for x < 0
(4)

and, consistent with loss aversion, υ+(x) > 0, υ−(x) < 0, υ′+(x) < υ′−(−x), υ′′+(x) ≤ 0, and

υ′′−(−x) ≥ 0 for all x > 0; and υ+(0) = υ−(0) = 0.

In general, an exact formula for identifying the individual’s reference point may be diffi-

cult to pin down. However, with respect to the motivating example of the two-urns problem,

there exists a very straightforward reference point: the probability distribution µ = (50r, 50b)

available to the DM with certainty via the first urn. Denoting this probability distribu-

tion as µr, the individual compares the certainty equivalent of the lottery induced by each

µ ∈ ∆(S) with the certainty equivalent of the lottery induced by µr. Labeling the induced

lotteries Pk = (...;xj, µk(Ej); ...) so that V (P1) ≥ · · · ≥ V (Pm) ≥ · · · ≥ V (Pn), where

V (Pm) = inf{V (Pi) : U
−1(V (Pi)) ≥ U−1(V (Pr))}, the individual’s preference function for

3That is, for a lottery P = (...;αi, pi; ...), V (P) =
∑

i U(αi) · pi.
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the second urn can be written as

W (f(·)) = V (Pr) +
m∑
i=1

υ+
(
CE(f, µi)− CE(f, µr)

)
·M(µi)

+
n∑

j=m+1

υ−
(
CE(f, µj)− CE(f, µr)

)
·M(µj). (5)

The first term comes from observing that the certainty equivalent of a lottery P is given

by U−1(V (P)). Without any ambiguity (i.e., without any first-stage uncertainty over the

distribution µ), the above simplifies to become W (f(·)) = V (Pr). Therefore, one restriction

we will need to enforce on the formulation of the reference point will be that, for any

degenerate first-stage lottery, the reference point used will always be equal to the certainty

equivalent of the second-stage lottery which is realized with certainty. That is, if an individual

faces a single-stage lottery P∗, their valuation of the degenerate two-stage lottery {P∗, 1}
must evaluate to W (f(·)) = V (P∗).

We could further complicate the model by allowing M(µ) to be a non-additive measure,

allowing individuals’ subjective probabilities to overweight low probability events and un-

derweight high probability events. We could then use the Choquet integral to evaluate the

preference function. However, I believe this is unnecessary to capture observed behavior,

and it also lacks any intuitive reasoning. Given that M(·) is a subjective probability, what

reason is there to incorporate systematic over- and under-weighting of the ‘true’ subjective

probabilities? However, this is a possibility that should perhaps be considered.

The general idea of this model is that, when comparing the ambiguous urn to the unam-

biguous urn, the DM considers all of the possible distributions µ ∈ ∆(S) that could occur in

the ambiguous urn, and they weight the ‘worse’ distributions more than the ‘better’ distri-

butions. The worse distributions are those that provide a higher certainty equivalent. In the

two urn example, the worse distributions are simply those that provide a lower probability of

winning. For example, if one is planning to bet on a red ball being drawn, a worse distribu-

tion would be one such as (40r, 60b), (30r, 70b), etc. Because all of the possible distributions

are centered around the (50r, 50b) distribution of the unambiguous urn, there are an equal

number of worse and better distributions possible in the ambiguous urn. As long as the

individual forms M(·) to be symmetric around µ = (50r, 50b), each ‘worse’ distribution will

have a mirror-image ‘better’ distribution that occurs with equal probability. However, be-

cause individuals are loss-averse, the worse distributions are more influential than the better

distributions, causing the ambiguous urn to be considered worse than the unambiguous urn.

To help clarify how the model captures ambiguity aversion and demonstrate that the
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model is capable of explaining observed behavior, I now provide a few examples.

3 Examples

3.1 Preferring the unambiguous urn

Here I provide an example illustrating how the model can accommodate Ellsberg preferences

in the two-urn example. Suppose the DM must choose between two gambles: (1) correctly

guessing the color ball to be drawn from an unambiguous urn with 1 red and 1 black ball,

or (2) correctly guessing the color ball to be drawn from an ambiguous urn with 2 total

balls, each of which is either red or black. Whichever gamble the DM chooses, if they

correctly guess the color to be drawn they are awarded $100. Otherwise, they are awarded

$0. Normalize utility so that U($100) = 1 and U($0) = 0.

For the individual’s subjective beliefs M(·), I believe it is fair to assume symmetry of

beliefs between the two colors. That is, if we restrict our attention to their beliefs over only

one of the colors, say red, M(·) must be symmetric around µm = (1r, 1b).4 There are two

distributions for M(·) that I think are reasonable for individuals to hold. The first is the

uniform distribution, which in general is given by µi = 1/(N + 1), where N is the size of

the urn (i.e., the number of balls in the urn). Since each possible distribution µi is uniquely

identified by the number of red balls, we can think of µi as referring to the distribution with i

red balls (and N− i black balls, so µi = (i∗r, (N− i)∗b)). The other reasonable distribution
is the binomial distribution, given by µi =

(
N
i

)
λi(1 − λ)N−i, where λ is the individual’s

perceived probability of a red ball being placed in the urn. In our current example, λ = 1/2.

In this case, the individual believes there is an underlying random process by which balls

are selected to fill the ambiguous urn. Both red and black balls have a 1/2 chance of being

selected to fill the urn, so that the distribution is centered around µm = (1r, 1b), but the

randomness in the selection process creates uncertainty around the final realized distribution.

To the individual, it’s as if the ambiguous urn was filled by randomly selecting balls (with

replacement) from an arbitrarily large urn containing λN red balls and (1−λ)N black balls.

To keep things simple, for the current example I will assume the individual holds uniform

beliefs over the possible distributions for the ambiguous urn. Since N = 2, they assign

4For example, if the individual believes there is a 10% chance that the realized distribution will have
0 red balls (and therefore 2 black balls), they must also believe there is a 10% chance that the realized
distribution will have 0 black balls (and 2 red balls). I will discuss relaxing this assumption in the future.
However, given that in this example the first urn provides the distribution (1r, 1b), I believe it is fair to
assume that beliefs should be symmetric around this distribution.
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probability 1/(N + 1) = 1/3 to each of the possible distributions

µ0 = (0r, 2b), µ1 = (1r, 1b), and µ2 = (2r, 0b). (6)

For a bet on red, the distribution µi provides probability i/N of winning $100.
Define utility to be given by υ+(x) = (x/100)β for x ≥ 0 and υ−(x) = −λ(−x/100)β for

x < 0. Following the median estimated values of β and λ reported in Tversky and Kahneman

(1992), set β = 0.88 and λ = 2.25. A bet on the first urn, denoted a1, induces the degenerate

two-stage lottery {P1, 1}, so that W (a1) = V (P1). The expected utility of the first urn is

given by V (Pr) = 1/2, where I denote the lottery induced by the first urn as Pr since it is

the reference lottery used in the evaluation of the second urn. So W (a1) = 1/2.

To evaluate the second urn, we must calculate the certainty equivalent for each possible

second-stage lottery. Let a2 be a bet on red in the second urn. Then for µ0, which is

a degenerate lottery with guaranteed payoff of $0, we have CE(a2, µ0) = 0. For µ2, a

degenerate lottery with guaranteed payoff of $100, we have CE(a2, µ2) = 100. Finally, for

the reference lottery µ1, we have CE(a2, µ1) = 45.50. Then the preference function for a bet

on red for the second urn is given by

W (a2) = 1/2 +

(
100− 45.50

100

)0.88

· (1/3) +
(
45.50− 45.50

100

)0.88

· (1/3)

− 2.25 ·

[(
−0− 45.50

100

)0.88
]
· (1/3)

= 0.5 + 0.195− 0.375

= 0.32

Thus, we have that

W (a1) = 0.5 > 0.32 = W (a2)

and the individual prefers the bet on the unambiguous urn over the bet on the ambiguous

urn.
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A note on the relationship between ambiguity aversion and the concavity of the

utility function

In the example just discussed, the underlying utility function is assumed to be concave over

positive monetary gains. To the extent that one believes concavity of utility represents

risk aversion, the previous exercise provides an example of a setting in which a risk averse

individual also displays ambiguity aversion. As can easily be shown, an individual with

a linear utility function—who would therefore be risk neutral—will also display ambiguity

aversion as long as they experience loss aversion (i.e., λ > 1 in the previous example).5

One might therefore assume that the amount of ambiguity aversion an individual displays

will be increasing in the concavity of their utility function. However, this is the opposite of

the actual relationship. As the utility function becomes increasingly concave, the individual

becomes less averse to ambiguity (and may actually prefer ambiguity, depending on the size

of λ). This can be most easily seen by considering an example.

Let’s keep the same parameterization of the previous example, except that we will now

set λ = 1.5 and β = 0.1.6 That is, we are decreasing the amount of loss aversion and

increasing the amount of risk aversion. In this case we get the following calculation:

W (a2) = 1/2 +

(
100− 0.10

100

)0.1

· (1/3)− 2.25 ·

[(
−0− 0.10

100

)0.1
]
· (1/3)

= 0.5 + 0.33− 1.5(0.167)

= 0.58

Thus, we now find that W (a2) = 0.58 > 0.5 = W (a1), so that the individual prefers the bet

on the ambiguous urn over the bet on the unambiguous urn. That is, the individual now

displays a preference for ambiguity.

If we reset λ = 2.25 so that the individual is as loss averse as they were before, then

the above calculation becomes W (a2) = 0.46 < 0.5 = W (a1), and we again observe that the

individual is ambiguity averse, albeit less so than in the original example. This demonstrates

5It is also assumed that the individual has subjective beliefs over the distribution of µ ∈ ∆(S) that are
symmetric, and that the subjective distribution M(µ) is not degenerate (i.e., the reference distribution µm

does not occur with probability 1). In the previous example, where the DM believes the distributions (0r, 2b)
and (2r, 0b) both occur with probability 1/3, it is clear that they will prefer the unambiguous urn: although
the ‘better’ distribution (2r, 0b) is considered to be better than the reference distribution (1r, 1b) by the exact
same amount that the ‘worse’ distribution (0r, 2b) is considered to be worse than the reference distribution,
because λ > 1 (i.e., the individual experiences loss aversion) the prospect of the ‘worse’ distribution weighs
more heavily on the individual’s decision-making process and results in a preference for the unambiguous
urn.

6This will make utility more concave over the positive domain and more convex over the negative domain,
since we are assuming loss aversion.
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the importance of loss aversion in observing ambiguity aversion. While higher levels of risk

aversion will make an individual more likely to prefer ambiguity, loss aversion counteracts

this effect.

3.2 Situation-dependent ambiguity aversion

One finding in the literature on ambiguity aversion that has been difficult to reconcile with

theoretical models of decision making is the finding that individuals will display an aversion

to ambiguity in some settings, while in other settings they display a preference for ambiguity.

When the unambiguous odds of winning a prize are relatively high, decision-makers tend to

avoid ambiguity, presumably fearing that the odds of winning will be lower for the ambiguous

gamble. However, when the unambiguous odds of winning are relatively low, DMs tend to

prefer ambiguity, presumably hoping that the odds will be better for the ambiguous gamble.

An example of the type of setting in which this behavior would be observed was provided

by Ellsberg (2015) in what he called his n-Color Example. In this case, there are again two

urns, each containing 100 balls. However, there are now 10 different colors. The first urn has

10 balls of each color, while the second (ambiguous) urn could contain any mixture of the 10

colors in any proportions. First consider a DM who must decide between two gambles: a1

pays $100 if a red ball is not drawn from the first (unambiguous) urn, and otherwise pays

$0; a2 pays $100 if a red ball is not drawn from the second (ambiguous) urn, and otherwise

pays $0. The bet on the unambiguous urn (a1) pays $100 with a known probability of 90%,

while the bet on the ambiguous urn (a2) is ambiguous. In this case, most DMs will prefer

gamble a1 over a2. However, now consider a DM who must decide between the following two

gambles: a3 pays $100 if a red ball is drawn from the first (unambiguous) urn, and otherwise

pays $0; a4 pays $100 if a red ball is drawn from the second (ambiguous) urn, and otherwise

pays $0. The bet on the unambiguous urn (a3) pays $100 with a known probability of 10%,

while the bet on the ambiguous urn (a4) is ambiguous. In this case, most DMs will prefer

the ambiguous gamble a4 over a3. That is, once the unambiguous odds of winning become

low enough, DMs reverse their preference for ambiguity.

This pattern of behavior is easily explained by the loss aversion model I have developed.

For the comparison of a1 and a2, where the unambiguous probability of winning $100 is 90%,

there are many more possible distributions which provide a lower probability of winning than

there are that provide a higher probability. When comparing the two gambles, there is little

potential upside to picking the ambiguous gamble a2, but there is a lot of potential downside.

Thus, it makes sense that in general DMs would prefer a1 over a2. However, the comparison

of a3 and a4 exhibits the opposite characteristics. The unambiguous gamble (a3) provides
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only a 10% chance of winning $100, and there are now many more possible distributions

which provide a higher probability of winning than there are distributions that provide a

lower probability. There is now little downside to choosing the ambiguous gamble, with a

significant amount of possible upside. In this case, DMs will be much more likely to prefer

the ambiguous gamble a4 over a3.

To demonstrate that the model can capture preference reversals such as those of Ellsberg’s

n-Color Example, keep the same parameterization of utility as the first example. That is,

set β = 0.88 and λ = 2.25. To help simplify things, reduce the total number of balls in each

urn to be 10, but keep all other aspects of the example the same. That is, the unambiguous

urn now has 1 ball of each color, and the ambiguous urn can contain any combination of

colors.

Let us first consider the comparison of gambles a1 and a2. Recall that a1 pays $100 if a red
ball is not drawn from the first (unambiguous) urn, and pays $0 otherwise; and a2 pays $100
if a red ball is not drawn from the second (ambiguous) urn, and pays $0 otherwise. As before,
the individual’s reference lottery is the unambiguous lottery, which in this case pays $100
with 90% probability and $0 with 10% probability. The certainty equivalent of this lottery

is CE(f, µr) = 88.72.7 If we assume the individual considers the number number of red balls

in the ambiguous urn to be determined by a uniform distribution (so that M(µi) =
1

N+1
for

all i, where i is the number of red balls in the urn and N is the size of the urn), then the

individual’s evaluation of the ambiguous gamble a2 is given by

W (a2) = 0.9 +
m∑
i=0

(
CE(f, µi)− CE(f, µr)

100

)0.88

· 1

N + 1

− 2.25 ·
N∑

j=m+1

(
−CE(f, µj)− CE(f, µr)

100

)0.88

· 1

N + 1
,

where m = 1 and N = 10. Relative to the unambiguous urn, there are clearly many

more ‘worse’ possible second-stage lotteries than there are ‘better’ ones. So even without

computing the above calculation, we should expect that W (a2) < W (a1). Indeed, the

calculation comes out to W (a2) = −0.11 < 0.9 = W (a1), showing that the individual

7f is an act that pays $100 if the event “a red ball is not drawn” is realized and pays $0 if the event
“a red ball is drawn” is realized. Note that the outcome of the act is based only on whether the drawn ball
is red or not. Therefore, all possible distributions µ ∈ ∆(S) can be expressed as (r,N − r), where r is the
number of red balls and N is the total number of balls in the urn. This assumes that individuals do not
differentiate between distributions that contain the same number of red balls (but for which the remaining
balls may consist of different mixtures of the other colors). I believe this assumption is easily defended.
This assumption greatly reduces the complexity of the computation of W (·), because it greatly reduces the
number of possible distributions that must be considered.
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strongly prefers the unambiguous gamble. The fact that W (a2) is calculated to be negative

should be interpreted keeping in mind that this is the individual’s evaluation of the ambiguous

bet in comparison with the unambiguous bet. That is, W (a2) < 0 does not imply that the

DM prefers receiving $0 with certainty over playing gamble a2 in general, but only that,

when gamble a1 is their reference lottery, they would prefer to receive nothing than to have

to play gamble a2.

Now consider the comparison of gambles a3 and a4. Gamble a3 pays $100 if a red ball is

drawn from the first (unambiguous) urn, and $0 otherwise. Gamble a4 pays $100 if a red ball

is drawn from the second (ambiguous) urn, and $0 otherwise. In this case, the individual’s

reference lottery is the unambiguous lottery a3, which pays $100 with 10% probability and

$0 with 90% probability. The certainty equivalent of this lottery is CE(f, µr) = 7.31, and

the individual’s evaluation of the ambiguous gamble a4 is given by

W (a4) = 0.1 +
N∑

i=m

(
CE(f, µi)− CE(f, µr)

100

)0.88

· 1

N + 1

− 2.25 ·
m−1∑
j=0

(
−CE(f, µj)− CE(f, µr)

100

)0.88

· 1

N + 1
,

where m = 1 and N = 10. Note the change of indices used for the summations. For

this gamble, having more red balls increases the chances of receiving the higher payout (and

therefore results in a ‘better’ lottery), while having fewer red balls results in a ‘worse’ lottery.

As is clear from the indices used, there are many more ‘better’ possible lotteries than there

are ‘worse’ possible lotteries. As such, the individual should be much more likely to prefer the

ambiguous gamble to the unambiguous gamble. Indeed, performing the above calculation

shows W (a4) = 0.51 > 0.1 = W (a3), confirming that the ambiguous gamble a4 is preferred

to a3.

3.3 Preferring larger ambiguous urns

As a final example, I demonstrate that the model is also able to capture the preference

for larger ambiguous urns observed in Filiz-Ozbay et al. (2022). Using an experiment in

which the size of urns is varied, Filiz-Ozbay et al. (2022) observe that, when comparing two

ambiguous urns of different sizes, subjects tend to prefer the bet on the larger urn.8

My model can explain the preference for larger ambiguous urns, but we must first make

a new rule for how individuals decide on a reference lottery. Unlike the previous examples,

8Subjects also appear to have a small preference for larger unambiguous urns, most likely because they
are stupid.
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there is no longer any unambiguous gamble to serve as a reference lottery. While we could

simply add a new rule to address this particular setting, it is clear that the model needs to

have a set of rules for determining the reference lottery to be used more generally. Although

this should have been addressed when the model was introduced, I will instead address it here.

Rules for Selecting the Reference Lottery:

(1) Single-stage (unambiguous) lotteries are evaluated with respect to the degenerate lot-

tery Pr = (0, 1), so that r = 0 for all single-stage lotteries. When all payoffs in lottery

P are non-negative (as in all of these examples), V (P) simplifies to the standard ex-

pected utility formula.

(2) When comparing a two-stage (ambiguous) lottery to a single-stage (unambiguous)

lottery, the single-stage (unambiguous) lottery is used as the reference lottery.

(3) When comparing two ambiguous lotteries, each lottery is evaluated using the reduced

lottery derived from the comparison lottery. That is, for two ambiguous lotteries de-

fined by the act f(·) and measures M(·) and M ′(·), the reference lottery used to eval-

uate the first lottery is given by Pr = (...; f(Ej),
∑

k µk(Ej)·M ′(µk); ...), and vice versa.

Rules (2) and (3) really say the same thing. They both say that whenever a two-stage lottery

is evaluated using W (f(·)), the reduction of the comparison lottery is used as the reference

lottery. Since the reduction of a single-stage objective lotteryP is justP, the objective lottery

is used as the reference lottery. However, the reduction of a two-stage lottery depends on

the individual’s subjective beliefs about M(·), and therefore the reference lottery is given by

the reduction of the comparison lottery.

Using these rules, we can now compare two ambiguous urns, as is done in Filiz-Ozbay

et al. (2022). Consider two urns of different sizes. The first urn contains 2 balls of an

unknown mixture of red and black, and the second urn contains 10 balls of an unknown

mixture of red and black. Suppose the DM can bet on either a red or black ball being drawn

from one of the urns, but must decide on which of the two urns they would like to place

their bet. Keep the same parameterization as used in all previous examples.

In order to evaluate the first urn, of size N = 2, the DM must determine the reference

lottery Pr. In this setting there are only two possible events: E1 = red is drawn, and E2 =

black is drawn. Thus, the reference lottery is given by

Pr =

(
$100,

N=10∑
k=0

µk(E1) ·M10(µk); $0,
N=10∑
k=0

µk(E2) ·M10(µk)

)
,
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where M10(·) is the individual’s subjective beliefs regarding the second-order uncertainty in

urn 2 (with N = 10 balls). The reference lottery will vary depending on the distribution

M10(·). However, as before, there are two straightforward distributions we can use: the

uniform distribution and the binomial distribution. The uniform distribution will simplify

to Pr = ($100, 0.5; $0, 0.5). Likewise, if the binomial distribution is assumed to be centered

around 0.5 (which would make the most sense), it will simplify to the same reference lottery.

The certainty equivalent of this reference lottery is given by CE(f, µr) = 45.50, and the

gamble on the smaller urn is evaluated as

W (a2) = 0.5 +

(
100− 45.50

100

)0.88

·M2(µ0) +

(
45.50− 45.50

100

)0.88

·M2(µ1)

− 2.25 ·

[(
−0− 45.50

100

)0.88
]
·M2(µ2).

If the uniform distribution is used for M2(·), we get Wu(a2) = 0.32. If the binomial distri-

bution centered around 0.5 is used, we get Wb(a2) = 0.37.

To evaluate the second urn, with N = 10, the DM must determine the reference lottery

using the expectation of the lottery for the first urn. Using either the uniform distribution

or the binomial distribution centered around 0.5 for M2(·) will produce the same reference

lottery as before. Thus, the gamble on the larger urn is evaluated as

W (a10) = 0.5 +
N∑

i=m

(
CE(f, µi)− CE(f, µr)

100

)0.88

·M10(·)

− 2.25 ·
m−1∑
j=0

(
−CE(f, µj)− CE(f, µr)

100

)0.88

·M10(·),

where m = 5. If the uniform distribution is used for M10(·), we get Wu(a10) = 0.33. If the

binomial distribution centered around 0.5 is used, we get Wb(a10) = 0.41. Thus, we find that

Wu(a2) = 0.32 < Wu(a10) = 0.33, and

Wb(a2) = 0.37 < Wb(a10) = 0.41.

That is, under both distributions the DM prefers to gamble on the larger urn. However, the

effect is more pronounced using the binomial distribution.
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